Showing posts with label food. Show all posts
Showing posts with label food. Show all posts

Addiction and Withdrawal - Why It's So Hard to Quit Sugar

We all know how important it is to cut back on sugar consumption. But your body can hit you with withdrawal-like symptoms when you do.

Photo by  Sharon McCutcheon from 

This article was originally published in  The Conversation

It might surprise you to learn that sugar consumption has actually been steadily decreasing since 2008. This could be happening for any number of reasons, including a shift in tastes and lifestyles, with the popularity of low-carbohydrate diets, like keto, increasing in the past decade. A greater understanding of the dangers of eating excess sugar on our health may also be driving this drop.

Reducing sugar intake has clear health benefits, including reduced calorie intake, which can help with weight loss, and improved dental health. But people sometimes report side-effects when they try eating less sugar – including headaches, fatigue or mood changes, which are usually temporary. The reason for these side-effects is poorly understood. But it’s likely these symptoms relate to how the brain reacts when exposed to sugary foods – and the biology of “reward”.

Carbohydrates come in several forms – including as sugars, which can naturally occur in many foods, such as fructose in fruits and lactose in milk. Table sugar – known as sucrose – is found in sugar cane and sugar beet, maple syrup and even honey.

As mass production of food has become the norm, sucrose and other sugars are now added to foods to make them more palatable. Beyond the improved taste and “mouthfeel” of foods with high sugar content, sugar has profound biological effects in the brain. These effects are so significant it’s even led to a debate as to whether you can be “addicted” to sugar – though this is still being studied.

Intense sweetness surpasses even cocaine in terms of the internal reward it triggers.

Sucrose activates sweet taste receptors in the mouth which ultimately leads to the release of a chemical called dopamine in the brain. Dopamine is a neurotransmitter, meaning it’s a chemical that passes messages between nerves in the brain. When we’re exposed to a rewarding stimulus, the brain responds by releasing dopamine – which is why it’s often called the “reward” chemical.

The rewarding effects of dopamine are largely seen in the part of the brain involved in pleasure and reward. Reward governs our behaviour – meaning we’re driven to repeat the behaviours which caused dopamine to be released in the first place. Dopamine can drive us to seek food (such as junk food).

Experiments in both animals and people have shown how profoundly sugar activates these reward pathways. Intense sweetness surpasses even cocaine in terms of the internal reward it triggers. Interestingly, sugar is able to activate these reward pathways in the brain whether it’s tasted in the mouth or injected into the bloodstream, as shown in studies on mice. This means its effects are independent of the sweet taste.

In rats, there’s strong evidence to suggest that sucrose consumption can actually change the structures in the brain that dopamine activates as well as altering emotional processing and modifying behaviour in both animals and humans.

Quitting sugar

It’s obvious that sugar can have a powerful effect on us. So that’s why it’s not surprising to see negative effects when we eat less sugar or remove it from our diet completely. It’s during this early “sugar withdrawal” stage that both mental and physical symptoms have been reported – including depression, anxiety, brain fog and cravings, alongside headaches, fatigue and dizziness. This means giving up sugar can feel unpleasant, both mentally and physically, which may make it difficult for some to stick with the diet change.

A change in the brain’s chemical balance is almost certainly behind the symptoms reported in humans who remove or reduce dietary sugar.

The basis for these symptoms has not been extensively studied, but it’s likely they’re also linked to the reward pathways in the brain. Although the idea of “sugar addiction” is controversial, evidence in rats has shown that like other addictive substances, sugar is able to induce bingeing, craving and withdrawal anxiety. Other research in animals has demonstrated that the effects of sugar addiction, withdrawal and relapse are similar to those of drugs. But most of the research that exists in this area is on animals, so it’s currently difficult to say whether it’s the same for humans.

The reward pathways in the human brain have remained unchanged by evolution – and it’s likely many other organisms have similar reward pathways in their brains. This means that the biological impacts of sugar withdrawal seen in animals are likely to occur to some degree in humans too because our brains have similar reward pathways.

A change in the brain’s chemical balance is almost certainly behind the symptoms reported in humans who remove or reduce dietary sugar. As well as being involved in reward, dopamine also regulates hormonal control, nausea and vomiting and anxiety. As sugar is removed from the diet, the rapid reduction in dopamine’s effects in the brain would likely interfere in the normal function of many different brain pathways, explaining why people report these symptoms. Although research on sugar withdrawal in humans is limited, one study has provided evidence of withdrawal symptoms and increased sugar cravings after sugar was removed from the diets of overweight and obese adolescents.

As with any dietary change, sticking to it is key. So if you want to reduce sugar from your diet long term, being able to get through the first few difficult weeks is crucial. It’s important to acknowledge, however, that sugar isn’t “bad” per se – but that it should be eaten in moderation alongside a healthy diet and exercise.

This article is republished from The Conversation under a Creative Commons license. The Conversation is a nonprofit organization working for the public good through fact and research based journalism.
The Conversation

Sizzling Science: How to Grill a Flavorful Steak

Want to learn how cooking transforms beef’s flavor? Meat scientists have the answers.

By Bob Holmes


Summer has arrived, and it’s time to fire up the backyard grill. Though many of us are trying to eat less beef for environmental reasons, it’s hard to resist indulging in an occasional steak — and you’ll want to make the most of the experience.

So, what’s the best way to grill that steak? Science has some answers.

Meat scientists (many of them, unsurprisingly, in Texas) have spent whole careers studying how to produce the tenderest, most flavorful beef possible. Much of what they’ve learned holds lessons only for cattle producers and processors, but a few of their findings can guide backyard grillmasters in their choice of meat and details of the grilling process.

Let’s start with the choice of meat. Every experienced cook knows that the lightly used muscles of the loin, along the backbone, have less connective tissue and thus give tenderer results than the hard-working muscles of the leg. And they know to look for steaks with lots of marbling, the fat deposits between muscle fibers that are a sign of high-quality meat. “If you have more marbling, the meat will be tenderer, juicier, and it will have richer flavor,” says Sulaiman Matarneh, a meat scientist at Utah State University who wrote about muscle biology and meat quality in the 2021  Annual Review of Animal Biosciences.

The challenge for the grillmaster is to achieve the ideal level of Maillard products at the moment the meat reaches the desired degree of doneness.

From a flavor perspective, in fact, the differences between one steak and the next are mostly a matter of fat content: the amount of marbling and the composition of the fatty acid subunits of the fat molecules. Premium cuts like ribeye have more marbling and are also richer in oleic acid, an especially tasty fatty acid — “the one fatty acid that frequently correlates with positive eating experience,” says Jerrad Legako, a meat scientist at Texas Tech University in Lubbock. Sirloin, in contrast, has less oleic acid and more fatty acid types that can yield less appealing, fishy flavor hints during cooking.

That fatty acid difference also plays out in a big decision that consumers make when they buy a steak: grain-fed or grass-fed beef? Grain-fed cattle — animals that live their final months in a feedlot eating a diet rich in corn and soybeans — have meat that’s higher in oleic acid. Animals that spend their whole life grazing on pasture have a higher proportion of omega-3 fatty acids, polyunsaturated fatty acids that break down into smaller molecules with fishy and gamy flavors. Many consumers prefer to buy grass-fed beef anyway, either to avoid the ethical issues of feedlots or because they like that gamy flavor and leaner meat.

The biggest influence on the final flavor of that steak, though, is how you cook it. Flavorwise, cooking meat accomplishes two things. First, the heat of the grill breaks the meat’s fatty acids into smaller molecules that are more volatile — that is, more likely to become airborne. These volatiles are responsible for the steak’s aroma, which accounts for the majority of its flavor. Molecules called aldehydes, ketones and alcohols among that breakdown mix are what we perceive as distinctively beefy.

The second way that cooking builds flavor is through browning, a process that chemists call the Maillard reaction. This is a fantastically complex process in which amino acids and traces of sugars in the meat react at high temperatures to kick off a cascade of chemical changes that result in many different volatile end products. Most important of these are molecules called pyrazines and furans, which contribute the roasty, nutty flavors that steak aficionados crave. The longer and hotter the cooking, the deeper into the Maillard reaction you go and the more of these desirable end products you get — until eventually, the meat starts to char, producing undesirable bitter, burnt flavors.

The challenge for the grillmaster is to achieve the ideal level of Maillard products at the moment the meat reaches the desired degree of doneness. Here, there are three variables to play with: temperature, time and the thickness of the steak.

Thin steaks cook through more quickly, so they need a hot grill to generate enough browning in the short time available, says Chris Kerth, a meat scientist at Texas A&M University. Kerth and his colleagues have studied this process in the lab, searing steaks to precise specifications and feeding the results into a gas chromatograph, which measures the amount of each volatile chemical produced.

Kerth found, as expected, that thin, half-inch steaks cooked at relatively low temperatures have mostly the beefy flavors characteristic of fatty acid breakdown, while higher temperatures also produce a lot of the roasty pyrazines that result from the Maillard reaction. So if your steak is thin, crank up that grill — and leave the lid open so that the meat cooks through a little more slowly. That will give you time to build a complex, beefy-roasty flavor.

“When you’re at those temperatures, a lot happens in a short period of time,” he says. “You start getting a lot of chemical reactions happening very, very quickly.”

And to get the best sear on both sides, flip the meat about a third of the way through the expected cook time, not halfway — that’s because as the first side cooks, the contracting muscle fibers drive water to the uncooked side. After you flip, this water cools the second side so it takes longer to brown, Kerth’s team found.

When the scientists tested thicker, 1.5-inch steaks, the opposite problem happened: The exterior would burn unpleasantly before the middle finished cooking. For these steaks, a moderate grill temperature gave the best mix of volatiles. And sure enough, when Kerth’s team tested their steaks on actual people, they found that diners gave lower ratings to thick steaks grilled hot and fast. Diners rated the other temperatures and cooking times as all similar to each other, but thick steaks cooked at moderate temperatures won out by a nose. 

That might seem odd, given that steakhouses often boast of their thick slabs of prime beef and the intense heat of their grills — exactly the combination Kerth’s study found least desirable. It works because the steakhouses use a two-step cooking process: First, they sear the meat on the hot grill, and then they finish cooking in a moderate oven. “That way, they get the degree of doneness to match the sear that they want,” says Kerth. Home cooks can do the same by popping their seared meat into a 350°F oven until it reaches their desired doneness.

The best degree of doneness, of course, is largely a matter of personal preference — but science has something to say here, too. Meat left rare, says Kerth, doesn’t receive enough heat to break down its fatty acids to generate beefy flavors. And once you go past medium, you lose some of the “bloody” flavors that come with lightly cooked meat. “A lot of people, myself included, like a little bit of bloody note with the brown pyrazines and Maillard compounds,” says Kerth. “It has a bigger flavor.” For those reasons, he advises, “I wouldn’t go any lower than medium rare or certainly any higher than medium. Then you just start losing a lot of the flavor.”

Kerth has one more piece of advice for home cooks: Watch the meat closely when it’s on the grill! “When you’re at those temperatures, a lot happens in a short period of time,” he says. “You start getting a lot of chemical reactions happening very, very quickly.” That’s the scientific basis for what every experienced griller has learned from (literally) bitter experience: It’s easy to burn the meat if you’re not paying attention.

Happy scientifically informed grilling!

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

BBQ Bacon Explosion Madness

BBQ Bacon Explosion Madness
Jason Day over at BBQ Addicts has come up with the most incredible, mouth-watering, artery-clogging recipe ever. Ladies and gentlemen I present to you: Bacon Explosion: The BBQ Sausage Recipe of all Recipes! If you had to choose your final meal, and this very well could turn out to be your last meal whether you chose it or not, it should be this barbequed pork fat delicacy.

Find more articles like these with Magatopia Article Search.

Or browse through over 2500 FREE online magazines at

New To Magatopia
Added the following columns/blogs to Magatopia's Food category:

Featured Online MagazineEsquire Magazine
Esquire is a featured magazine all this month on Magatopia. Esquire is a magazine about the interests, the curiosity and the passions of men. Articles on fashion, health and money.

Just one of the over 2500 free online magazines available through Magatopia. All of the magazines Magatopia links to have news, articles or columns that you can read online for free.

Featured Free MagazineNASA Tech Briefs
NASA Tech Briefs features exclusive reports of innovations developed by NASA and its industry partners/contractors that can be applied to develop new/improved products and solve engineering or manufacturing problems for your business. Monthly.

One of many print magazine subscriptions available for free through Magatopia Free Magazines. This is a full subscription - not a trial. Just fill out a simple application to receive your subscription in the mail. You will never receive a bill. Guaranteed.

Popular Posts